ПΠ

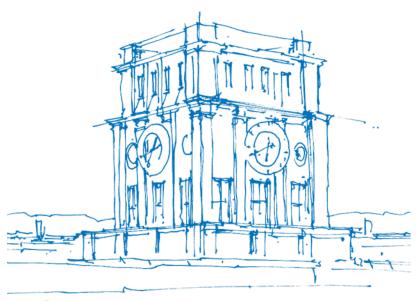
Localization in the Hierarchical Anderson Model

Per von Soosten

Joint work with Simone Warzel Based on arXiv: 1608.01602

Mathematical Results in Quantum Physics 13 Georgia Institute of Technology 10/09/2016

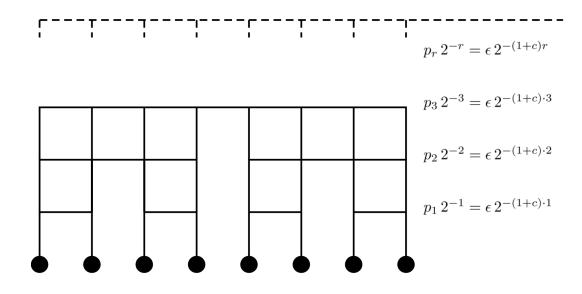
DFG Deutsche Forschungsgemeinschaft



Tur Uhrenturm

The Hierarchical Anderson Model

- We will consider $H = \Delta + V$ on $\ell^2(\mathbb{N})$
- $V = \sum V_k |\delta_k\rangle \langle \delta_k|$ is a random potential with $\{V_k\}$ drawn independently from $\varrho \in L^{\infty}$
- Δ represents hierarchically organized hopping on \mathbb{N} :



Hierarchical hopping characterized by $p_r = \epsilon 2^{-cr}$ with c > 0 and $\epsilon > 0$

• Induced metric $d(j, k) = \inf\{r : j, k \text{ lie in common cluster of size } 2^r\}$

The Hierarchical Laplacian Δ

• Infinitely degenerate eigenvalues

$$\lambda_{s} = \sum_{r=1}^{s} p_{r}$$

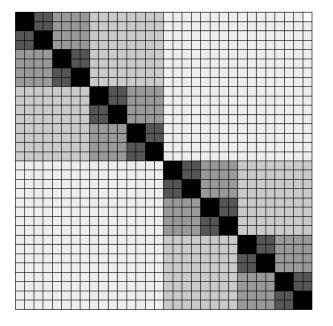
accumulating at $\lambda_{\infty} = \sum p_r$

• Eigenfunctions delocalize as $\lambda_s \to \lambda_\infty$, e.g.

 $|\operatorname{supp}\psi_{s}|=2^{s}$

• Defines an effective spectral dimension

$$d_s := \lim_{t \to 0} \frac{\log \nu(\lambda_\infty - t, \lambda_\infty)}{\log t} = \frac{2}{c}$$



Heat map of Δ

Motivation and Previous Work

 Retaining crucial features while gaining simplicity Ising ferromagnets (Dyson 1969) |Φ|⁴ model (Gawędzki, Kupiainen 1983) Spin glasses (Gardner 1984) Directed polymers (Derrida, Griffiths 1989)

...

 Predictions about localization-delocalization transition Critical dimension *d_s* > 4 (Bovier 1990) Pure-point spectrum when *ρ* is Cauchy (Molchanov 1996) Pure-point spectrum when *d_s* < 4 (Kritchevski 2007) Poisson statistics when *d_s* < 1 (Kritchevski 2008) Critical energy at ∑ *p_r* when *d_s* > 2 (Metz, Leuzzi, Parisi, Sacksteder 2014)

Assumption on the Disorder Density ϱ

Let $T_{\rho\varrho}$ denote the density of

$$\left(\frac{1}{2V}+\frac{1}{2V'}\right)^{-1}+p$$

where V and V' are independently drawn from ρ .

Assumption

 $I \subset \mathbb{R}$ is an interval for which there exists $\delta > 0$ with the property that

$$\|T_{p_r}...T_{p_1}\varrho_E\|_{\infty} = \mathcal{O}\left(2^{(c-\delta)r}\right)$$

uniformly in $E \in I$.

Valid with $I = \mathbb{R}$ if:

- ϱ has a Cauchy component
- ρ is Gaussian and $d_s < 4$, or
- *d*_s < 2.

Numerical studies show that the assumption is true whenever $\rho > 0$.

Main Results

Theorem

• There exist $\mu > 0$ and $K < \infty$ such that

$$\sup_{n\geq 1}\sum_{k\in\mathbb{N}}2^{\mu d(0,k)}\mathbb{E}|G_n(0,k;E)|^s\leq K$$

uniformly in $E \in I$.

• The rescaled eigenvalue point process

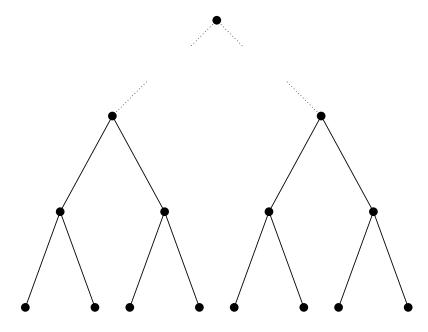
$$\mu_n(f) = \sum_{\lambda \in \sigma(H_n)} f(2^n(\lambda - E)), \qquad f \in C_0(\mathbb{R})$$

converges in distribution to a Poisson point process with intensity $\nu(E)$.

Remarks

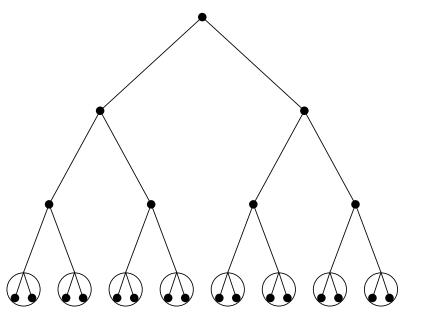
- Implies both exponential spectral localization and dynamical localization in the mean
- Exponential spectral localization can also be proved without any assumption on the density ϱ
- This extends results of Molchanov (1996) and Kritchevski (2007)

Two Philosophies



Philosophy I: Removing the root

$$H_{n} = H_{n-1} \oplus H_{n-1}' + p_{n} |\varphi_{n}\rangle \langle \varphi_{n}|$$



Philosophy II: Collapsing the leaves

FKS Renormalization

The FKS Renormalization

- Recall that *H* depends on $p_r = \epsilon 2^{-cr}$ and ϱ .
- Renormalization Dynamics:

$$\mathcal{R}\left((\boldsymbol{p}_{r})_{r=1}^{\infty},\varrho\right) = \left(\{\boldsymbol{p}_{r+1}\}_{r=1}^{\infty}, T_{\boldsymbol{p}_{1}}\varrho\right)$$

• Formula of Metz, Leuzzi, Parisi & Sacksteder (2014):

$$G_n(0,2k;0) = 2\frac{V_1}{V_0+V_1}\frac{V_{2k+1}}{V_{2k}+V_{2k+1}}(\mathcal{R}G)_{n-1}(0,k;0)$$

• Proof idea: Take the Feshbach-Krein-Schur complement in an appropriate basis.

Driving Towards High Disorder

- FKS renormalization decreases the hopping strength $\mathcal{R}p_r = p_{r+1} = 2^{-c}p_r$.
- By assumption $\mathcal{R}\varrho = T_{p_1}\varrho$ does not decrease the disorder strength.
- After a finite number of steps an Aizenman-Molchanov type high disorder argument applies, i.e.,

$$\mathbb{E} \left| \mathcal{R}^{N} G_{n-N} \left(0, \lfloor k/2^{N} \rfloor, 0 \right) \right|^{s} \leq C_{N} 2^{-\mu d(0,k)}.$$

Key Lemma

There exists a constant $C_s(\varrho) < \infty$ such that

$$\mathbb{E} \left| G_n(0,k;0)
ight|^s \leq C_s(arrho) \mathbb{E} \left| \mathcal{R} G_{n-1}(0,\lfloor k/2
floor;0)
ight|^s$$

for all $k \in B_n \setminus \{0\}$.

ПΠ

Summary

- The hierarchical Anderson model exhibits eigenfunction-correlator localization and Poissonian level statistics at all energies in all spectral dimensions for any strength of the disorder.
- Renormalization methods reduce strong localization phenomena to a classical real analysis problem.
- Open Problem: Suppose that $\rho \in C^1$ is a strictly positive probability density. Prove that for every $E_0 \in \mathbb{R}$ there exists a small interval *I* about E_0 such that

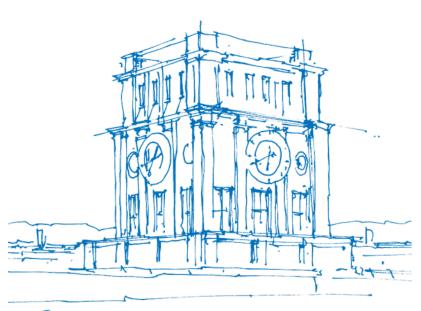
$$\|T_{p_r}...T_{p_1}\varrho_E\|_{\infty}=\mathcal{O}\left(2^{(c-\delta)r}\right)$$

uniformly in $E \in I$.

Thank You!

Further Information:

P. von Soosten and S. Warzel. *Renormalization Group Analysis of the Hierarchical Anderson Model.* arXiv: 1608.01602



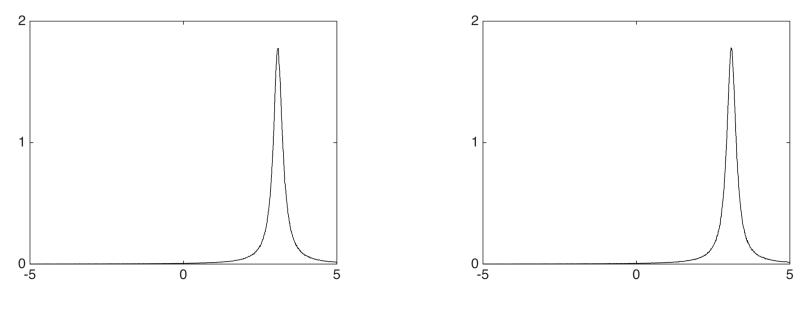
Tur Uhrenturm

ТШП

Numerical Evidence

• If $\rho(0) > 0$, $\left(\frac{1}{2V} + \frac{1}{2V'}\right)^{-1}$ does not concentrate since V^{-1} has only fractional moments

• In particular, $T_{p\varrho}$ is in an α -stable basin of attraction (with $\alpha = 1$)



 $T_{p_5}...T_{p_1}\varrho$ when $\varrho = \mathcal{N}(0, 1/4)$ and c = 1/3

Cauchy distribution with $\mu = 3.09$ and $\sigma = 0.18$

Poisson Statistics: Sketch of the Proof

- Remove the most extended hopping $H_n = H_{n-1} \oplus H'_{n-1} + p_n |\varphi_n\rangle \langle \varphi_n |$
- The spectral shift is controlled by $F(E) = \langle \varphi_n, (H_{n-1} \oplus H'_{n-1} E i0)^{-1} \varphi_n \rangle$
- FKS calculations show that 1/F(E) is distributed according to $T_{\rho_n}...T_{\rho_1}\varrho_E$
- Thus μ_n is well-approximated by $\mu_{n-1} + \mu_{n-1}'$
- Iterating this shows that μ is infinitely divisible